Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.213
Filtrar
1.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607016

RESUMO

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of mono-genetic inherited neurological disorders, whose primary manifestation is the disruption of the pyramidal system, observed as a progressive impaired gait and leg spasticity in patients. Despite the large list of genes linked to this group, which exceeds 80 loci, the number of cellular functions which the gene products engage is relatively limited, among which endoplasmic reticulum (ER) morphogenesis appears central. Mutations in genes encoding ER-shaping proteins are the most common cause of HSP, highlighting the importance of correct ER organisation for long motor neuron survival. However, a major bottleneck in the study of ER morphology is the current lack of quantitative methods, with most studies to date reporting, instead, on qualitative changes. Here, we describe and apply a quantitative image-based screen to identify genetic modifiers of ER organisation using a mammalian cell culture system. An analysis reveals significant quantitative changes in tubular ER and dense sheet ER organisation caused by the siRNA-mediated knockdown of HSP-causing genes ATL1 and RTN2. This screen constitutes the first attempt to examine ER distribution in cells in an automated and high-content manner and to detect genes which impact ER organisation.


Assuntos
Doenças do Sistema Nervoso , Paraplegia Espástica Hereditária , Animais , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Ligação ao GTP/metabolismo , Paraplegia Espástica Hereditária/genética , Mamíferos/metabolismo
2.
Nat Commun ; 15(1): 3036, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589439

RESUMO

The Alanine-Serine-Cysteine transporter 1 (Asc-1 or SLC7A10) forms a crucial heterodimeric transporter complex with 4F2hc (SLC3A2) through a covalent disulfide bridge. This complex enables the sodium-independent transport of small neutral amino acids, including L-Alanine (L-Ala), Glycine (Gly), and D-Serine (D-Ser), within the central nervous system (CNS). D-Ser and Gly are two key endogenous glutamate co-agonists that activate N-methyl-d-aspartate (NMDA) receptors by binding to the allosteric site. Mice deficient in Asc-1 display severe symptoms such as tremors, ataxia, and seizures, leading to early postnatal death. Despite its physiological importance, the functional mechanism of the Asc-1-4F2hc complex has remained elusive. Here, we present cryo-electron microscopy (cryo-EM) structures of the human Asc-1-4F2hc complex in its apo state, D-Ser bound state, and L-Ala bound state, resolved at 3.6 Å, 3.5 Å, and 3.4 Å, respectively. Through detailed structural analysis and transport assays, we uncover a comprehensive alternating access mechanism that underlies conformational changes in the complex. In summary, our findings reveal the architecture of the Asc-1 and 4F2hc complex and provide valuable insights into substrate recognition and the functional cycle of this essential transporter complex.


Assuntos
Proteínas de Membrana Transportadoras , Serina , Camundongos , Humanos , Animais , Microscopia Crioeletrônica , Serina/metabolismo , Proteínas de Membrana Transportadoras/genética , Glicina , Cisteína
3.
Curr Biol ; 34(7): R267-R268, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593766

RESUMO

In this Quick guide, Palmer and Berks introduce the twin-arginine translocation (Tat) systems. Tats are found in a variety of microbes and microbe-derived organelles, and are known to translocate folded substrate proteins across biological membranes.


Assuntos
Proteínas de Escherichia coli , Sistema de Translocação de Argininas Geminadas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Membrana Celular/metabolismo , Arginina/metabolismo , Transporte Proteico , Sinais Direcionadores de Proteínas , Proteínas de Bactérias/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(16): e2310693121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607934

RESUMO

Urinary tract infections (UTI) account for a substantial financial burden globally. Over 75% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which have demonstrated an extraordinarily rapid growth rate in vivo. This rapid growth rate appears paradoxical given that urine and the human urinary tract are relatively nutrient-restricted. Thus, we lack a fundamental understanding of how uropathogens propel growth in the host to fuel pathogenesis. Here, we used large in silico, in vivo, and in vitro screens to better understand the role of UPEC transport mechanisms and their contributions to uropathogenesis. In silico analysis of annotated transport systems indicated that the ATP-binding cassette (ABC) family of transporters was most conserved among uropathogenic bacterial species, suggesting their importance. Consistent with in silico predictions, we determined that the ABC family contributed significantly to fitness and virulence in the urinary tract: these were overrepresented as fitness factors in vivo (37.2%), liquid media (52.3%), and organ agar (66.2%). We characterized 12 transport systems that were most frequently defective in screening experiments by generating in-frame deletions. These mutant constructs were tested in urovirulence phenotypic assays and produced differences in motility and growth rate. However, deletion of multiple transport systems was required to achieve substantial fitness defects in the cochallenge murine model. This is likely due to genetic compensation among transport systems, highlighting the centrality of ABC transporters in these organisms. Therefore, these nutrient uptake systems play a concerted, critical role in pathogenesis and are broadly applicable candidate targets for therapeutic intervention.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Escherichia coli Uropatogênica , Humanos , Animais , Camundongos , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Virulência/genética , Escherichia coli Uropatogênica/genética , Proteínas de Membrana Transportadoras/genética , Virulência
5.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488830

RESUMO

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.


Assuntos
Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/análogos & derivados , Transportadores de Ânions Orgânicos , Simportadores , Ácido N-Acetilneuramínico/química , Simportadores/genética , Simportadores/metabolismo , Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
6.
J Med Virol ; 96(3): e29546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516804

RESUMO

Tapasin, a crucial molecular chaperone involved viral antigen processing and presentation, plays an important role in antivirus immunity. However, its impact on T cell differentiation in the context of virus clearance remains unclear. In this study, we employed induced pluripotent stem cells to differentiate into hepatocyte-like cell, which were subsequently inserted to the inverted colloidal crystal scaffolds, thus establishing a hepatocyte organoid (HO). By inoculating hepatitis B virus (HBV) particles in the system, we successfully engineered a robust in vitro HBV infection model for at least 3 weeks. Furthermore, we aimed to explore the effects of lentivirus-mediated short hairpin RNA (shRNA) targeting human Tapasin on the differentiation and antiviral function of CD8+ T cells. Specifically, we transfected dendritic cells (DCs) with Tapasin-shRNA and cocultured with T cells. The results demonstrated that Tapasin-shRNA transfected DCs effectively suppressed T cell proliferation and impeded HBV-specific cytotoxic T lymphocyte responses. Our investigation also revealed the role of mTOR pathway activation in reducing autophagy activity within CD8+ T cells. Expressions of autophagy-related proteins, beclin-1, LC3II/LC3I were decreased and PI3K/AKT/mTOR activity was increased in Tapasin-shRNA group. Collectively, our findings elucidate that shRNA targeting the Tapasin gene within DCs inhibits T cell differentiation by reducing autophagy activity to hamper viral clearance in the HBV-infected HO.


Assuntos
Células Dendríticas , Hepatite B , Proteínas de Membrana Transportadoras , Humanos , Autofagia/genética , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Regulação para Baixo , Hepatite B/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Organoides/metabolismo , Organoides/virologia
7.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473983

RESUMO

Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar Primária Familiar/genética , Mutação de Sentido Incorreto , Hemodinâmica , Deleção de Sequência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Mutação , Adenosina Trifosfatases/genética , Proteínas de Membrana Transportadoras/genética , Fator 2 de Diferenciação de Crescimento/genética
8.
Commun Biol ; 7(1): 349, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514781

RESUMO

The past decade has seen an increase in the prevalence of sequence type (ST) 45 methicillin-resistant Staphylococcus aureus (MRSA), yet the underlying drivers for its emergence and spread remain unclear. To better understand the worldwide dissemination of ST45 S. aureus, we performed phylogenetic analyses of Australian isolates, supplemented with a global population of ST45 S. aureus genomes. Our analyses revealed a distinct lineage of multidrug-resistant ST45 MRSA harbouring qacA, predominantly found in Australia and Singapore. Bayesian inference predicted that the acquisition of qacA occurred in the late 1990s. qacA was integrated into a structurally variable region of the chromosome containing Tn552 (carrying blaZ) and Tn4001 (carrying aac(6')-aph(2")) transposable elements. Using mutagenesis and in vitro assays, we provide phenotypic evidence that qacA confers tolerance to chlorhexidine. These findings collectively suggest both antimicrobial resistance and the carriage of qacA may play a role in the successful establishment of ST45 MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Teorema de Bayes , Filogenia , Infecções Estafilocócicas/epidemiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/genética , Austrália
9.
Appl Microbiol Biotechnol ; 108(1): 251, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436751

RESUMO

Product secretion from an engineered cell can be advantageous for microbial cell factories. Extensive work on nucleotide manufacturing, one of the most successful microbial fermentation processes, has enabled Corynebacterium stationis to transport nucleotides outside the cell by random mutagenesis; however, the underlying mechanism has not been elucidated, hindering its applications in transporter engineering. Herein, we report the nucleotide-exporting major facilitator superfamily (MFS) transporter from the C. stationis genome and its hyperactive mutation at the G64 residue. Structural estimation and molecular dynamics simulations suggested that the activity of this transporter improved via two mechanisms: (1) enhancing interactions between transmembrane helices through the conserved "RxxQG" motif along with substrate binding and (2) trapping substrate-interacting residue for easier release from the cavity. Our results provide novel insights into how MFS transporters change their conformation from inward- to outward-facing states upon substrate binding to facilitate efflux and can contribute to the development of rational design approaches for efflux improvements in microbial cell factories. KEYPOINTS: • An MFS transporter from C. stationis genome and its mutation at residue G64 were assessed • It enhanced the transporter activity by strengthening transmembrane helix interactions and trapped substrate-interacting residues • Our results contribute to rational design approach development for efflux improvement.


Assuntos
Corynebacterium , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/genética , Transporte Biológico , Corynebacterium/genética , Nucleotídeos
10.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542476

RESUMO

Sugar transporters play important roles in plant growth and development, flowering and fruiting, as well as responses to adverse abiotic and biotic environmental conditions. Lilies (Lilium spp.) are some of the most representative ornamental bulbous flowers. Sugar metabolism is critical for bulb formation in lilies; therefore, clarifying the amount and expression pattern of sugar transporters is essential for further analyzing their roles in bulb formation. In this study, based on the transcriptome data of the Lilium Oriental hybrid 'Sorbonne' and Lilium × formolongi, a total of 69 and 41 sugar transporters were identified in 'Sorbonne' and Lilium × formolongi, respectively, by performing bioinformatics analysis. Through phylogenetic analysis, monosaccharide transporters (MSTs) can be divided into seven subfamilies, sucrose transporters (SUTs) can be divided into three subgroups, and sugars will eventually be exported transporters (SWEETs) can be divided into four clades. According to an analysis of conserved motifs, 20, 14, and 12 conserved motifs were predicted in MSTs, SUTs, and SWEETs, respectively. A conserved domain analysis showed that MSTs and SUTs contained a single domain, whereas most of the SWEETs harbored two MtN3/saliva domains, also known as a PQ-loop repeat. The LohINT1, which was predicted to have a smaller number of transmembrane structural domains, was cloned and analyzed for subcellular localization. It was found that the LohINT1 protein is mainly localized in the cell membrane. In addition, the expression analysis indicated that 22 LohMSTs, 1 LohSUTs, and 5 LohSWEETs were upregulated in 'Sorbonne' 1 day after scale detachment treatment, suggesting that they may regulate the initiation of the bulblet. A total of 10 LflMSTs, 1 LflSUTs, and 6 LflSWEETs were upregulated 4~6 months after sowing, which corresponds to the juvenile-to-adult transition phase of Lilium × formolongi, suggesting that they may also play a role in the accompanying bulb swelling process. Combined with quantitative real-time PCR (qRT-PCR) analysis, LohSTP8 and LohSTP12 were significantly overexpressed during the extremely early stage of bulblet initiation, and LflERD6.3 was significantly overexpressed during the growth of the underground bulblet, suggesting that they may be key sugar transporters in the formation of lily bulbs, which needs further functional verification.


Assuntos
Lilium , Lilium/metabolismo , Filogenia , Metabolismo dos Carboidratos , Transcriptoma , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
BMC Med Genomics ; 17(1): 55, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378613

RESUMO

BACKGROUND: Gene variants are responsible for more than half of hearing loss, particularly in nonsyndromic hearing loss (NSHL). The most common pathogenic variant in SLC26A4 gene found in East Asian populations is c.919-2A > G followed by c.2168A > G (p.H723R). This study was to evaluate their variant frequencies in patients with NSHL from special education schools in nine different areas of Southwest China's Yunnan. METHODS: We performed molecular characterization by PCR-products directly Sanger sequencing of the SLC26A4 c.919-2AG and c.2168 A > G variants in 1167 patients with NSHL including 533 Han Chinese and 634 ethnic minorities. RESULTS: The SLC26A4 c.919-2A > G variant was discovered in 8 patients with a homozygous state (0.69%) and twenty-five heterozygous (2.14%) in 1167 patients with NSHL. The total carrier rate of the c.919-2A > G variant was found in Han Chinese patients with 4.50% and ethnic minority patients with 1.42%. A significant difference existed between the two groups (P < 0.05). The c.919-2A > G allele variant frequency was ranged from 3.93% in Kunming to zero in Lincang and Nvjiang areas of Yunnan. We further detected the SLC26A4 c.2168 A > G variant in this cohort with one homozygotes (0.09%) and seven heterozygotes (0.60%), which was detected in Baoshan, Honghe, Licang and Pu`er areas. Between Han Chinese group (0.94%) and ethnic minority group (0.47%), there was no statistical significance (P > 0.05). Three Han Chinese patients (0.26%) carried compound heterozygosity for c.919-2A > G and c.2168 A > G. CONCLUSION: These data suggest that the variants in both SLC26A4 c.919-2A > G and c.2168 A > G were relatively less frequencies in this cohort compared to the average levels in most regions of China, as well as significantly lower than that in Han-Chinese patients. These results broadened Chinese population genetic information resources and provided more detailed information for regional genetic counselling for Yunnan.


Assuntos
Surdez , Etnicidade , Proteínas de Membrana Transportadoras , Humanos , Etnicidade/genética , Mutação , Proteínas de Membrana Transportadoras/genética , Grupos Minoritários , China/epidemiologia , Conexinas/genética , Transportadores de Sulfato/genética
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220377, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368933

RESUMO

SORLA, the protein encoded by the SORL1 gene, has an important role in recycling cargo proteins to the cell surface. While SORLA loss-of-function variants occur almost exclusively in Alzheimer's disease cases, the majority of SORL1 variants are missense variants that are individually rare and can have individual mechanisms how they impair SORLA function as well as have individual effect size on disease risk. However, since carriers mostly come from small pedigrees, it is challenging to determine variant penetrance, leaving clinical significance associated with most missense variants unclear. In this article, we present functional approaches to evaluate the pathogenicity of a SORL1 variant, p.D1105H. First, we generated our mutant receptor by inserting the D1105H variant into the full-length SORLA-WT receptor. Then using western blot analysis we quantified the effect of the mutation on maturation and shedding of the receptor for transfected cells, and finally applied a flow cytometry approach to quantify SORLA expression at the cell surface. The results showed decreased maturation, decreased shedding, and decreased cell surface expression of D1105H compared with wild-type SORLA. We propose how these approaches can be used to functionally assess the pathogenicity of SORL1 variants in the future. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Alzheimer , Humanos , Virulência , Mutação , Doença de Alzheimer/genética , Predisposição Genética para Doença , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220389, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368935

RESUMO

The endosomal gene SORL1 is a strong Alzheimer's disease (AD) risk gene that harbours loss-of-function variants causative for developing AD. The SORL1 protein SORL1/SORLA is an endosomal receptor that interacts with the multi-protein sorting complex retromer to traffic various cargo through the endo-lysosomal network (ELN). Impairments in endo-lysosomal trafficking are an early cellular symptom in AD and a novel therapeutic target. However, the cell types of the central nervous system are diverse and use the ELN differently. If this pathway is to be effectively therapeutically targeted, understanding how key molecules in the ELN function in various cell types and how manipulating them affects cell-type specific responses relative to AD is essential. Here, we discuss an example where deficiency of SORL1 expression in a human model leads to stress on early endosomes and recycling endosomes in neurons, but preferentially leads to stress on lysosomes in microglia. The differences observed in these organelles could relate to the unique roles of these cells in the brain as neurons are professional secretory cells and microglia are professional phagocytic cells. Experiments to untangle these differences are fundamental to advancing the understanding of cell biology in AD and elucidating important pathways for therapeutic development. Human-induced pluripotent stem cell models are a valuable platform for such experiments. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Microglia/metabolismo , Lisossomos/metabolismo , Neurônios , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
14.
Hereditas ; 161(1): 8, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317267

RESUMO

BACKGROUND: Oculocutaneous albinism (OCA) is a group of rare genetic disorders characterized by a reduced or complete lack of melanin in the skin, hair, and eyes. Patients present with colorless retina, pale pink iris, and pupil, and fear of light. The skin, eyebrows, hair, and other body hair are white or yellowish-white. These conditions are caused by mutations in specific genes necessary for the production of melanin. OCA is divided into eight clinical types (OCA1-8), each with different clinical phenotypes and potential genetic factors. This study aimed to identify the genetic causes of non-syndromic OCA in a Chinese Han family. METHODS: We performed a comprehensive clinical examination of family members, screened for mutation loci using whole exome sequencing (WES) technology, and predicted mutations using In silico tools. RESULTS: The patient's clinical manifestations were white skin, yellow hair, a few freckles on the cheeks and bridge of the nose, decreased vision, blue iris, poorly defined optic disk borders, pigmentation of the fundus being insufficient, and significant vascular exposure. The WES test results indicate that the patient has compound heterozygous mutations in the OCA2 gene (c.1258G > A (p.G420R), c.1441G > A (p.A481T), and c.2267-2 A > C), respectively, originating from her parents. Among them, c.1258G > A (p.G420R) is a de novo mutation with pathogenic. Our analysis suggests that compound heterozygous mutations in the OCA2 gene are the primary cause of the disease in this patient. CONCLUSIONS: The widespread application of next-generation sequencing technologies such as WES in clinical practice can effectively replace conventional detection methods and assist in the diagnosis of clinical diseases more quickly and accurately. The newly discovered c.1258G > A (p.G420R) mutation can update and expand the gene mutation spectrum of OCA2-type albinism.


Assuntos
Albinismo Oculocutâneo , Melaninas , Humanos , Feminino , Melaninas/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Albinismo Oculocutâneo/diagnóstico , Albinismo Oculocutâneo/genética , China
15.
Int J Biol Macromol ; 263(Pt 2): 130441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417760

RESUMO

Carbohydrates are exported by the SWEET family of transporters, which is a novel class of carriers that can transport sugars across cell membranes and facilitate sugar's long-distance transport from source to sink organs in plants. SWEETs play crucial roles in a wide range of physiologically important processes by regulating apoplastic and symplastic sugar concentrations. These processes include host-pathogen interactions, abiotic stress responses, and plant growth and development. In the present review, we (i) describe the structure and organization of SWEETs in the cell membrane, (ii) discuss the roles of SWEETs in sugar loading and unloading processes, (iii) identify the distinct functions of SWEETs in regulating plant growth and development including flower, fruit, and seed development, (iv) shed light on the importance of SWEETs in modulating abiotic stress resistance, and (v) describe the role of SWEET genes during plant-pathogen interaction. Finally, several perspectives regarding future investigations for improving the understanding of sugar-mediated plant defenses are proposed.


Assuntos
Proteínas de Plantas , Plantas , Proteínas de Plantas/química , Plantas/genética , Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Carboidratos , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
16.
Antimicrob Agents Chemother ; 68(3): e0134023, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38364015

RESUMO

We evaluated the role of Staphylococcus aureus AbcA transporter in bacterial persistence and survival following exposure to the bactericidal agents nafcillin and oxacillin at both the population and single-cell levels. We show that AbcA overexpression resulted in resistance to nafcillin but not oxacillin. Using distinct fluorescent reporters of cell viability and AbcA expression, we found that over 6-14 hours of persistence formation, the proportion of AbcA reporter-expressing cells assessed by confocal microscopy increased sixfold as cell viability reporters decreased. Similarly, single-cell analysis in a high-throughput microfluidic system found a strong correspondence between antibiotic exposure and AbcA reporter expression. Persister cells grown in the absence of antibiotics showed neither an increase in nafcillin MIC nor in abcA transcript levels, indicating that survival was not associated with stable mutational resistance or abcA overexpression. Furthermore, persister cell levels on exposure to 1×MIC and 25×MIC of nafcillin decreased in an abcA knockout mutant. Survivors of nafcillin and oxacillin treatment overexpressed transporter AbcA, contributing to an enrichment of the number of persisters during treatment with pump-substrate nafcillin but not with pump-non-substrate oxacillin, indicating that efflux pump expression can contribute selectively to the survival of a persister population.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Nafcilina , beta-Lactamas/metabolismo , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Oxacilina/farmacologia , Oxacilina/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
17.
Plant Mol Biol ; 114(1): 17, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342783

RESUMO

Fluoride is an environmental toxin prevalent in water, soil, and air. A fluoride transporter called Fluoride EXporter (FEX) has been discovered across all domains of life, including bacteria, single cell eukaryotes, and all plants, that is required for fluoride tolerance. How FEX functions to protect multicellular plants is unknown. In order to distinguish between different models, the dynamic movement of fluoride in wildtype (WT) and fex mutant plants was monitored using [18F]fluoride with positron emission tomography. Significant differences were observed in the washout behavior following initial fluoride uptake between plants with and without a functioning FEX. [18F]Fluoride traveled quickly up the floral stem and into terminal tissues in WT plants. In contrast, the fluoride did not move out of the lower regions of the stem in mutant plants resulting in clearance rates near zero. The roots were not the primary locus of FEX action, nor did FEX direct fluoride to a specific tissue. Fluoride efflux by WT plants was saturated at high fluoride concentrations resulting in a pattern like the fex mutant. The kinetics of fluoride movement suggested that FEX mediates a fluoride transport mechanism throughout the plant where each individual cell benefits from FEX expression.


Assuntos
Arabidopsis , Fluoretos , Fluoretos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico
18.
mSphere ; 9(2): e0063123, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38299856

RESUMO

Gregory Harrison is a bacteriologist researching essential pathways in bacteria as potential therapeutic targets. In this mSphere of Influence article, he reflects on a series of studies that employ complementary genetic approaches to define the crucial role of AsmA-family proteins in transporting phospholipids between the inner and outer membranes of Gram-negative bacteria. The authors of these three studies identify this family of lipid transporters through the means of bacterial genetics, answering a long-standing question in bacterial physiology, and serving as a reminder that a well-designed genetic strategy can go a long way in uncovering new biology.


Assuntos
Bactérias Gram-Negativas , Proteínas de Membrana Transportadoras , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Bactérias Gram-Negativas/genética
19.
BMC Genomics ; 25(1): 169, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347517

RESUMO

BACKGROUND: ATP-binding cassette (ABC) transporter proteins constitute a plant gene superfamily crucial for growth, development, and responses to environmental stresses. Despite their identification in various plants like maize, rice, and Arabidopsis, little is known about the information on ABC transporters in pear. To investigate the functions of ABC transporters in pear development and abiotic stress response, we conducted an extensive analysis of ABC gene family in the pear genome. RESULTS: In this study, 177 ABC transporter genes were successfully identified in the pear genome, classified into seven subfamilies: 8 ABCAs, 40 ABCBs, 24 ABCCs, 8 ABCDs, 9 ABCEs, 8 ABCFs, and 80 ABCGs. Ten motifs were common among all ABC transporter proteins, while distinct motif structures were observed for each subfamily. Distribution analysis revealed 85 PbrABC transporter genes across 17 chromosomes, driven primarily by WGD and dispersed duplication. Cis-regulatory element analysis of PbrABC promoters indicated associations with phytohormones and stress responses. Tissue-specific expression profiles demonstrated varied expression levels across tissues, suggesting diverse functions in development. Furthermore, several PbrABC genes responded to abiotic stresses, with 82 genes sensitive to salt stress, including 40 upregulated and 23 downregulated genes. Additionally, 91 genes were responsive to drought stress, with 22 upregulated and 36 downregulated genes. These findings highlight the pivotal role of PbrABC genes in abiotic stress responses. CONCLUSION: This study provides evolutionary insights into PbrABC transporter genes, establishing a foundation for future research on their functions in pear. The identified motifs, distribution patterns, and stress-responsive expressions contribute to understanding the regulatory mechanisms of ABC transporters in pear. The observed tissue-specific expression profiles suggest diverse roles in developmental processes. Notably, the significant responses to salt and drought stress emphasize the importance of PbrABC genes in mediating adaptive responses. Overall, our study advances the understanding of PbrABC transporter genes in pear, opening avenues for further investigations in plant molecular biology and stress physiology.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Pyrus , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Pyrus/genética , Proteínas de Membrana Transportadoras/genética , Estresse Fisiológico/genética , Trifosfato de Adenosina , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas
20.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338743

RESUMO

Efflux pumps play important roles in bacterial detoxification and some of them are stress-response elements that are up-regulated when the host is treated with antibiotics. However, efflux pumps that are down-regulated by stimulations are rarely discovered. Herein, we analyzed multiple transcriptome data and discovered a special (Major Facilitator Superfamily) MFS efflux pump, KpsrMFS, from Klebsiella pneumoniae, which was down-regulated when treated with antibiotics or extra carbon sources. Interestingly, overexpression of kpsrmfs resulted in halted cell growth in normal conditions, while the viable cells were rarely affected. The function of KpsrMFS was further analyzed and this efflux pump was determined to be a proton-driven transporter that can reduce the intracellular tetracycline concentration. In normal conditions, the expression of kpsrmfs was at a low level, while artificial overexpression of it led to increased endogenous reactive oxygen species (ROS) production. Moreover, by comparing the functions of adjacent genes of kpsrmfs, we further discovered another four genes that can confer similar phenotypes, indicating a special regulon that regulates cell growth. Our work provides new insights into the roles of efflux pumps and suggests a possible regulon that may regulate cell growth and endogenous ROS levels.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...